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Abstract. A simple method of constructing superoscillatory functions is given. It is based on
a zero-shifting principle of functions in Paley–Wiener space.

There exist functions that oscillate like cosx but they can do so arbitrarily faster than cosx

in an interval with arbitrary length. This strange phenomenon, called superoscillation, is
firstly described by Aharonov (cf [1]). Using the asymptotic of integrals, Berry gave a
clever way to construct a large class of superoscillation functions ([1]). This fact has many
interesting applications in quantum mechanics such as [2] and [3]. In this paper we will give
a zero-shifting principle which implies that we can get arbitrary superoscillation from any
band-limited function. Any physical signal has finite energy, so we consider the function
f (x) ∈ L2(R) with f̂ (ξ) = 0 for |ξ | > π , where f̂ means Fourier–Laplace transform.
These functions form a Paley–Wiener spaceWπ . The following theorem is classical (cf
[4]).

Theorem (Paley–Wiener).Supposeξ ∈ R. If ĝ(ξ) ∈ L2([−π, π ]) then ĝ(ξ) = 0 for
|ξ | > π if and only if there is af (x) ∈ L2(R), f (z) is entire andf (z) = O(eπ |z|) such
that f̂ (ξ) = ĝ(ξ) .

Now we can give

Theorem (Zero-shifting principle).If f (x) ∈ Wπ is continuous withc zero, then for any
real numbers, g(x) = x−s

x−c
f (x) is also inWπ .

Proof. g(z) = z−s
z−c

f (z) is of O(eπ |z|) andg(x) ∈ L2(R) sinceg(z) ∼ f (z) for |z| → ∞.

Using this theorem we can get arbitrary superoscillation functions from arbitrary given
band-limited functions very easily. For example, consider

f (x) = sinπx

πx
=

∞∏
n=1

(1 − x2

n2
)

which oscillates like cosπx. Slightly modifying it, we get

g(x) =
N∏

n=1

(1 − k2x2

n2
)

∞∏
n=N+1

(1 − x2

n2
) k > 1

which oscillates like coskx during [−N/k, N/k] but globally like cosx.
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